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Summary. Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, rare lung disease
resulting in chronic oto-sino-pulmonary disease in both children and adults. Many physicians
incorrectly diagnose PCD or eliminate PCD from their differential diagnosis due to inexperience
with diagnostic testing methods. Thus far, all therapies used for PCD are unproven through large
clinical trials. This review article outlines consensus recommendations from PCD physicians in
North America who have been engaged in a PCD centered research consortium for the last 10
years. These recommendations have been adopted by the governing board of the PCD
Foundation to provide guidance for PCD clinical centers for diagnostic testing, monitoring, and
appropriate short and long-term therapeutics in PCD patients. Pediatr Pulmonol. 2016;51:115—-

132.
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INTRODUCTION

Primary ciliary dyskinesia (PCD) is a genetically
heterogeneous, rare lung disease causing chronic oto-
sino-pulmonary disease and irreversible lung damage that
may progress to respiratory failure.'™ Recently, signifi-
cant progress has been made in PCD diagnosis,* yet few
physicians outside of highly experienced PCD centers are
skilled in recognizing the characteristic clinical pheno-
type and interpreting diagnostic tests.’™ Patients often
receive false-positive or false-negative PCD diagnoses, as
physicians are unaware of the pitfalls commonly
encountered with ciliary electron microscopy,'®!' PCD
molecular genetic panels,'>"® ciliary motility stud-
ies,'* 16 and nasal nitric oxide testing.”’18 Furthermore,
PCD is often missed when respiratory symptoms are
present in patients with other complex diseases involving
cilia, such as heterotaxy and various genetic syn-
dromes.'”?? From a therapeutic perspective, there are
no prospective, randomized clinical trials on monitoring
or treating PCD. Thus, physicians treating PCD adapt

ABBREVIATIONS:

ABPA allergic bronchopulmonary aspergillosis
CF cystic fibrosis

CFTR cystic fibrosis transmembrane regulator

CRS chronic rhinosinusitis
CT computed tomography

EM electron microscopy

ESS endoscopic sinus surgery

GDMCC  Genetic Disorders of Mucociliary Clearance Consortium
IDA inner dynein arm

IF immunofluorescence testing

IVIG intravenous immunoglobulin
MTD microtubule disorganization
N-DRC nexin-dynein regulatory complex
NGS next generation sequencing

nNO nasal nitric oxide

NTM non-tuberculosis mycobacterium
ODA outer dynein arm

OME otitis media with effusion

PBB protracted bacterial bronchitis
PCD primary ciliary dyskinesia

PET pressure equalization tubes
ROM recurrent otitis media

SIT situs inversus totalis

SA situs ambiguus

TTN transient tachypnea of the newborn
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therapeutic approaches used for other chronic respiratory
diseases, such as cystic fibrosis (CF) and non-CF
bronchiectasis. Differences in various phenotypic param-
eters among PCD, CF, and non-CF bronchiectasis suggest
that extrapolating therapies may not be appropriate for
PCD management in some circumstances.* >

Because of the uncertainty surrounding diagnosis and
management of PCD, physicians from the Genetic
Disorders of Mucociliary Clearance Consortium
(GDMCC) created this consensus statement to guide
new North American PCD clinical centers endorsed by
the PCD Foundation. The GDMCC includes clinicians at
nine academic centers in North America that have
systematically evaluated over 1,000 patients suspected
of having PCD and performed longitudinal studies of
pediatric patients with a confirmed diagnosis of PCD. The
GDMCC also works closely with the PCD Foundation on
research and clinical PCD projects. This consensus
statement is evidence based where possible, and addresses
key clinical PCD issues, but it is not the product of
GRADE recommendations.>” Through telephone confer-
ences, email communications, and in person meetings,
eight pediatric pulmonologists, two adult pulmonologists,
and two otolaryngologists from North America undertook
to: (1) describe the PCD clinical phenotype, (2) establish
standard PCD diagnostic recommendations, (3) recom-
mend PCD clinical care and long-term monitoring
schedules, and (4) outline clinical therapies used to
manage PCD. After a literature review (using Pubmed and
Embase), drafts were created and circulated iteratively to
participating physicians with discussion of feedback and
suggestions over sequential telephone conferences and
electronic communications. Participating GDMCC physi-
cians and the PCD Foundation governing board unani-
mously approved this consensus statement.

PCD CLINICAL PHENOTYPE

Clinical symptoms in PCD affect the entire respiratory
tract; the majority of symptoms occur on a chronic, daily
basis and start soon after birth (Table 1). At least 80% of
newborn babies with PCD develop neonatal respiratory
distress despite a full-term gestation, with increased work
of breathing, tachypnea, and prevalence of upper and
middle lobe atelectasis on chest radiographs.?® Most PCD
patients are well immediately after birth, but develop
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TABLE 1— Age-Related Prevalence of Clinical Features in Primary Ciliary Dyskinesia’

Youngest age when
feature present in >50% of PCD

PCD clinical feature

Youngest age when
feature present in >80% of PCD

Neonatal respiratory distress
Organ laterality defects (SIT or SA)

12hr of life”
Neonatal to school age —

24 hr of life?

Recurrent otitis media with effusion Infancy Infancy
Year-round, daily cough Infancy Infancy
Year-round, daily nasal congestion Infancy Infancy
Chronic pansinusitis Preschool® School age
Recurrent lower respiratory infections Infancy Preschool
Bronchiectasis School age Adult
Male infertility — Adult

SIT, situs inversus totalis; SA, situs ambiguus.
' Adapted from Knowles et al.*
Reference.”®

3Pansinusitis is seen in almost all patients with PCD who have sinus imaging studies, but these studies are not done often in pre-school age children.

respiratory distress at 12—24 hr of life (as opposed to other
causes of respiratory distress in term neonates (e.g.,
transient tachypnea of the newborn—TTN), which often
present in the first few hours after birth). A small
proportion of PCD patients are discharged home on day 1
of life but are then hospitalized with respiratory distress
within the first few weeks of life. Often misdiagnosed
with TTN or pneumonia, PCD infants frequently require
supplemental oxygen for days to weeks. When neonatal
respiratory distress appears, particularly with situs
inversus totalis or other situs anomalies, PCD should be
investigated.

At least 80% of PCD patients also have year-round,
daily nasal congestion (or chronic sinusitis in older
children and adults), which appears in early infancy and
does not resolve with changes of season or between viral
infections. Nasal polyps can occur in PCD,* and nearly
all PCD patients demonstrate severe pansinusitis on
computed tomography (CT) scan.*

Persistent, year-round, daily cough from early infancy
is present in nearly 100% of PCD patients.* The cough is
usually wet and productive, even in infancy, yet
occasionally patients report dry cough. The cough can
partially improve with antibiotic therapy, but does not
resolve with therapy or changes of season. Conversely,
episodic cough alternating with symptom-free periods is
unlikely to be from PCD.

A spectrum of organ laterality defects occur with PCD,
including situs inversus totalis (SIT—mirror-image
arrangement) and situs ambiguus (SA—arrangement
falls somewhere between normal and mirror image;
Fig. 1). SA may be associated with complex congenital
heart disease (known as heterotaxy), yet mild cardiac
septal defects can also occur with PCD. SIT occurs in
slightly less than 50% of PCD patients,”® whereas SA
occurs in at least 12% of PCD."? Subtle laterality defects
(e.g., intestinal malrotation, interrupted inferior vena

cava, or polysplenia) may be undetected in PCD patients
without further imaging studies, such as abdominal
ultrasound, spleen scan, or echocardiogram. In patients
with chronic oto-sino-pulmonary disease and any organ
laterality or cardiac defect, PCD should be considered.

Recurrent otitis media (ROM) with chronic middle ear
effusion affects at least 80% of children with PCD,
particularly in the first year of life.*’ Complications of
ROM may include multiple sets of pressure equalization
tubes, conductive hearing loss, speech/language delay, or
need for hearing aids.>* Chronic middle ear disease is
quite common in the general pediatric population;
thereby, ROM alone is insufficient to warrant further
PCD testing. The absence of ROM goes against, but does
not rule out, a diagnosis of PCD.

Recurrent pneumonia or bronchitis is common in
PCD; however, some infants will lack this history due
to frequent antibiotics for nasal discharge and otitis
media. By preschool age, up to 80% of PCD patients
have recurrent lower respiratory tract infections.*
Bronchiectasis, predominantly affecting the middle
and lower lobes,*? is an age-related finding in PCD,
with 50% of children having bronchiectasis by 8 years
of age and nearly universal presence in adults.**** In
adults with PCD, the combination of bronchiectasis and
chronic sinusitis may be the most readily identifiable
PCD-related features because adults with PCD may not
be able to recall age of onset of early childhood
symptoms.

Finally, infertility occurs in nearly 100% of adult males
with PCD, while females with PCD also have reduced
fertility. The structure in both sperm tails and the fimbriae
of fallopian tubes are almost identical to those in
respiratory cilia. Thus, males with PCD have diminished
fertility through reduced sperm motility,*® while females
with PCD have increased risk of ectopic pregnancy from
abnormal fallopian transit of oocytes.

Pediatric Pulmonology
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Fig. 1. Examples of various laterality defects on radiology imaging in PCD. Different situs
arrangements found in PCD, including (A) a participant with situs solitus, or normal organ
arrangement, with left cardiac apex, left-sided stomach bubble, and right-sided liver; (B) a patient
with situs inversus totalis (SIT), or mirror-image organ arrangement, with right cardiac apex,
right-sided stomach bubble, and left-sided liver; (C) a patient with situs ambiguus (SA), with left
cardiac apex, right-sided stomach bubble, right-sided liver, and intestinal malrotation; This
patient also had right-sided polysplenia visualized on a CT scan. C, cardiac apex; S, stomach; L,
liver; M, intestinal malrotation. Reproduced with permission from CHEST."®

All of the above features may not be seen in each
individual patient with PCD; however, most patients have
3 or more of the above features. The combination of
multiple distinct clinical features of PCD (neonatal
respiratory distress, chronic wet cough with recurrent
lower respiratory infections and bronchiectasis, chronic
nasal drainage with pansinusitis, recurrent otitis media
particularly in childhood, laterality defect, and male
infertility) markedly increases the likelihood of a PCD
diagnosis.

APPROACH TO DIAGNOSING PCD
Diagnostic Tests

The first step in diagnosing PCD is evaluation for
clinical features of PCD as outlined in the prior section.
The diagnosis of PCD requires clinical phenotypic
features in conjunction with diagnostic testing. A number
of tests can be used to support the diagnosis of PCD, and
often a panel of tests are required to confirm a PCD
diagnosis (Table 2). As PCD can result from various
defects in ciliary biogenesis, structure, function, or
organization, no single test captures all PCD defects.
For instance, patients with biallelic DNAHII mutations
have a classic clinical phenotype and low nasal nitric
oxide levels, but normal electron microscopy (EM)
ultrastructure with only subtle changes on ciliary
waveform analysis.'® Patients with biallelic mutations
in RSPHI demonstrate later onset of clinical symptoms,
subtle EM defects, and slight changes in ciliary
waveform, with borderline (and in some cases normal)
nasal nitric oxide levels.>® Consequently, a panel of the
following PCD diagnostic tests are recommended, and
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with a greater number of positive tests, there is a higher
likelihood of definite PCD.

Diagnostic PCD algorithms will differ per patient
location (where some tests will not be readily accessible)
and upon local expertise of the institution performing the
PCD investigation. Furthermore, age of the patient may
dictate which PCD testing should be initially pursued. In
neonates and children <5 years old, nasal nitric oxide
values are not as reliable; thus diagnostic testing in this
age group usually includes ciliary biopsy for electron
microscopy and/or genetic studies in North America,
versus ciliary biopsy for high speed videomicroscopy
analysis in Europe. In children over 5 years old and adults,
who can cooperate with the required maneuvers for nasal
nitric oxide measurement, a low nasal nitric oxide value
coupled with an appropriate clinical phenotype may be
adequate for a clinical diagnosis of PCD, followed by
ciliary biopsy for electron microscopy or high speed
videomicroscopy and/or genetic studies, as needed.
Minimal PCD diagnostic criteria have been proposed
by the GDMCC (Table 3). For all patients given a
diagnosis of PCD by clinicians outside of PCD Founda-
tion Clinical Centers, at least one visit to a PCD
Foundation Clinical Center is recommended to officially
confirm the diagnosis. For patients followed in centers
without PCD expertise, a PCD Foundation Clinical
Center referral for diagnostic investigation is highly
recommended.

Respiratory Epithelial Biopsy With Electron Microscopy

Respiratory epithelial biopsy with EM processing for
ultrastructural examination of ciliary axonemes is a proven
technique for PCD diagnosis”’ and is recommended as part
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TABLE 2— Recommended Diagnostic Testing Methods for Primary Ciliary Dyskinesia

Potential for false
negative results

Potential for false

Test recommended for PCD diagnosis positive results

2

Nasal nitric oxide measurement Low' Low
Ciliary biopsy with electron microscopy Variable® Variable*
PCD genetic testing panels Low’ Moderate®
Functional ciliary beat/waveform analysis with high speed videomicroscopy Variable’ Moderate®
Immunofluorescence testing Unknown Unknown

' As long as cystic fibrosis has been excluded. Risk of false positive result is increased during viral respiratory infection, epistaxis, and non-atopic
sinusitis. Testing should be performed at baseline health status and repeated if there is any question about health status.

“Reference.'®

3The risk of false positive result is moderately increased with secondary changes from infectious processes or pollutant exposures, improper
specimen handling and processing, or inexperience with electron microscopy interpretation.*

“Several PCD-causing genetic mutations can result in normal electron microscopy'® or subtle changes which are not readily apparent.®
>Misinterpretation of genetic panel result (e.g., variants of unknown significance or single mutations in two different PCD genes interpreted as
“diagnostic”).

SGenetic panel testing may miss large insertions, deletions, and mutations in novel genes, since approximately 30% of PCD do not have identifiable
mutations in the currently known PCD associated genes, but this risk should decrease with broader range of genetic analysis provided by NGS panels.
"With a high risk for false positive results from secondary insults on a single test. To limit this risk, many centers now perform three ciliary biopsies
at separate clinical visits for repeat high speed videomicroscopy analysis.

8Subtle waveform defects will be missed in centers without extensive experience.

of a panel of diagnostic tests for PCD. Disease causing EM
defects in the outer dynein arms,*” outer and inner dynein
arms,41 inner dynein arms with microtubule disorganiza-
tion,** radial spokes,*’ or central apparatus***> provide
confirmation of PCD diagnosis (Fig. 2). However, EM
studies with normal ciliary ultrastructure do not rule out
PCD, as certain PCD gene mutations can result in normal
ultrastructure,'®***¢ or subtle abnormalities (particularly
those involving the central apparatus and radial spokes)

TABLE 3— Recommended PCD Diagnostic Criteria by Age

that are not readily recognized on EM.*"*® Additionally,
repeat biopsies that fail to demonstrate any respiratory cilia
could represent an oligociliary defect causing PCD.**°
It is estimated that EM will detect approximately 70%
of all PCD cases,* but in centers inexperienced with EM
processing and interpretation, this percentage will be
notably less. Centers lacking extensive experience with
ciliary EM processing and interpretation should strongly
consider referring patients to a PCD Foundation clinical

Newborns (0—1 month of age)

Situs inversus totalis and unexplained neonatal respiratory distress at term birth plus at least one of the following:

Diagnostic ciliary ultrastructure on electron micrographs
Biallelic mutations in one PCD-associated gene

Persistent and diagnostic ciliary waveform abnormalities on high-speed videomicroscopy, on multiple occasions

Children (1 month to 5 years)

Two or more major PCD clinical criteria (see below) plus at least one of the following (nasal nitric oxide not included in this age group, since

it is not yet sufficiently tested):
Diagnostic ciliary ultrastructure on electron micrographs
Biallelic mutations in one PCD-associated gene

Persistent and diagnostic ciliary waveform abnormalities on high-speed videomicroscopy, on multiple occasions

Children 5-18 years of age and adults

Two or more major PCD clinical criteria (see below) plus at least one of the following:
Nasal nitric oxide during plateau <77 nl/min on 2 occasions, >2 months apart, with cystic fibrosis excluded

Diagnostic ciliary ultrastructure on electron micrographs
Biallelic mutations in one PCD-associated gene

Persistent and diagnostic ciliary waveform abnormalities on high-speed videomicroscopy, on multiple occasions

Major clinical criteria for PCD diagnosis*

1) Unexplained neonatal respiratory distress (at term birth) with lobar collapse and/or need for respiratory support with CPAP and/or oxygen for

>24 hr.

2) Any organ laterality defect—situs inversus totalis, situs ambiguous, or heterotaxy.

3) Daily, year-round wet cough starting in first year of life or bronchiectasis on chest CT.

4) Daily, year-round nasal congestion starting in first year of life or pansinusitis on sinus CT.

*Other diagnostic possibilities should have been considered, such as cystic fibrosis and immunodeficiencies, and diagnostic tests performed to rule

out those disorders, as clinically indicated.

Pediatric Pulmonology
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ODA & IDA
Defect

Normal

ODA Defect

IDA Defect*  IDA+MTD

Defect

Fig. 2. Electron microscopy findings in primary ciliary dyskinesia. Diagnostic ciliary electron
microscopy findings in primary ciliary dyskinesia. Normal ciliary ultrastructure (A), Outer and
inner dynein arm defect (B), Outer dynein arm defect (C), Inner dynein arm defect alone* (D), Inner
dynein arm defect with microtubule disorganization (E). * Inner dynein arm defects alone are

quite rare as a cause of PCD and usually due to secondary artifact. Adapted from Leigh et a

center for PCD investigations. At least 2050 clear ciliary
cross-sections are required for a diagnostic EM study, and
diagnostic abnormalities should be consistently demon-
strated on cross sectional images from multiple different
cilia to be considered disease causing. Physicians may try
nasal corticosteroids, nasal saline lavages, or systemic
antibiotics for persistent nasal symptoms interfering with
biopsies, but these practices are unproven and may not
improve biopsy yield. Furthermore, it is essential that
biopsies are collected when patients are at their baseline
health, as secondary changes in ciliary ultrastructure can
occur during respiratory exacerbations.'> Thus, biopsies
should be delayed until at least 2 weeks after full recovery
from an illness. For absence of inner dynein arms in
isolation, repeat biopsy and EM studies are always
required to verify that this pathologic change persists and
therefore is more likely genetic (primary) and not from
secondary causes.'! One may also consider repeat
biopsies to verify the universality and permanence of
findings suggestive of central apparatus, radial spoke, or
inner dynein arm with microtubule disorganization
defects. Patients with EM studies consistent with PCD
should be referred to a PCD Foundation Clinical Center
for confirmation.

Nasal Nitric Oxide Measurement

Measurement of nasal nitric oxide (nNO) by chemilu-
minescence analyzer is recommended as part of a panel of
diagnostic tests for PCD in adults and children >5 years
old.'® This test is sensitive, rapid, non-invasive, and
results are immediately available. Nasal NO values are
more reliable in school aged children and adults because
these patients can cooperate with blowing into a resistor.
Tidal breathing techniques for nNO measurement in
children <5 years old are currently being investigated,'’
but PCD diagnostic cutoff values for tidal techniques are
not currently available. Unfortunately, chemilumines-
cence devices are limited to research settings in North
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America, but they are gaining acceptance as a clinical tool
in various countries across Europe, through efforts by the
BESTCILIA PCD consortium.’’ Handheld electrochem-
ical nNO analyzers are affordable and portable, but with
only limited prospective study in PCD,’*** these devices
are not currently recommended for PCD testing.

Nasal nitric oxide values are extremely low in
PCD.>** Using a nNO cutoff value <77 nl/min, one
will detect PCD, resulting from ciliary axonemal defects
or mutations in DNAH11, with sensitivity and specificity
of 98% and >99%, respectively, if CF has been ruled out
(Figure 3).!% Values well above this cutoff level
significantly decrease the likelihood of PCD. However,
clinicians still must consider PCD when confronted with
an appropriate clinical phenotype for PCD and nNO
values above 77 nl/min, as forms of PCD with nNO values
above this cutoff have rarely been reported.’®>” Very low
nNO levels (below 77 nl/min) can occur during acute viral
respiratory infections and in approximately 30% of
patients with cystic fibrosis; therefore, nNO testing
must be performed when the patient has fully recovered
from a viral illness and after diagnostic testing to rule out
cystic fibrosis.”® Other conditions can also result in nNO
levels below PCD cutoff values (i.e., HIV,”® panbron-
chiolitis,60 non-atopic sinusitis61). Lastly, nNO device
operators must be well trained and use standard operating
protocols to avoid false results.'®

Functional Ciliary Beat/Waveform Analysis With High
Speed Videomicroscopy

Ciliary biopsy with examination of cilia waveform by
high speed videomicroscopy can provide confirmation of
PCD, and this test is recommended as part of a panel of
PCD diagnostic tests, but only in centers highly
experienced with this technology.®> Functional ciliary
analysis is difficult to perform correctly, and considerable
experience is necessary to avoid false-positive and false-
negative results. Biopsies should only be performed when
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Fig. 3. Nasal nitric oxide in primary ciliary dyskinesia and healthy
controls. Scatter plot of nasal nitric oxide (nNO) values (linear
scale; nl/min) versus age for individuals with primary ciliary
dyskinesia (PCD, with cystic fibrosis ruled out) and healthy
control subjects with nNO cutoff of 77 nl/min. All nNO values from
healthy control subjects (open circles) were well above the cutoff
of 77 nl/min and most of the nNO measurements in subjects with
PCD and ciliary ultrastructure defects (open triangles, single
measurements; solid triangles, repeated measurements) were
below the cutoff. Findings are similar in disease controls,
including asthma and COPD (data not shown). The three solid
triangles above the cutoff are repeated measurements in the same
individual with PCD. Reproduced with permission from the
American Thoracic Society. Copyright © 2015 American Thoracic
Society. The Annals ofthe American Thoracic Societyis an official
journal of the American Thoracic Society.'®

patients are in their baseline state of health. Repeat
biopsies are required to assure abnormal beat patterns are
not due to secondary processes, such as viral illness,63
tobacco or environmental exposures,64 poor biopsy
specimen,'® or improper biopsy processing.'* Some
European centers also maintain biopsied epithelial cells
in culture for weeks, at an air-liquid interface, to remove
influence of secondary insults.'” There are no prospective
studies examining inter-rater agreement for functional
ciliary analysis. Currently, there are no American centers
that can reliably perform this testing, yet several skilled
European centers regularly employ this test.

Immunofluorescence Testing for Ciliary Proteins

Immunofluorescence testing (IF) using antibodies to
detect missing dynein arm proteins along the ciliary
axoneme can help confirm PCD as part of a panel of PCD
diagnostic tests.>°® Through staining of specific ciliary
proteins (DNAHS5, DNAI2, DNALII, and RSPH4A/
RSPH1/RSPH9), which are essential for overall dynein
arm and radial spoke head assembly, IF can detect various
outer dynein arm, inner dynein arm, and radial spoke
defects, even when other (often less integral) ciliary
protein deficiencies are the primary cause of PCD.**%7~"2
Although IF is currently limited to a few centers, it has
been shown equivalent to EM analysis for detecting outer
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dynein arm defects, caused by DNAHS, in a small
(n=16), blinded study.°® Additionally, IF diagnostic
results do not seem to be affected by secondary insults.”
Further investigations are required to evaluate the
sensitivity and specificity of IF against other PCD
diagnostic tests.

PCD Genetic Testing

Genetic testing for disease-causing mutations associ-
ated with PCD is recommended as part of a panel of
diagnostic PCD tests. There are currently 33 known genes
associated with PCD (Table 4), with new genes being
discovered at a rapid pace.®'>'*7* Almost all of these
genes follow autosomal recessive inheritance (with
exception of two rare, X-linked syndromic genes RPGR
and OFDI—see section on “Diseases that co-exist with
PCD”); therefore, two disease-causing mutations must
occur in the same PCD gene for a diagnosis. No
documented cases of digenic inheritance (heterozygous
mutations in two different PCD genes), unequivocally
associated with human PCD, exist thus far. Currently, the
most comprehensive commercial PCD genetic panel tests
19 PCD genes through next generation sequencing
(NGS), at a cost of $1,990, and detects approximately
50% of PCD cases.”> Genetic testing costs for other
commercial NGS panels range from $1,500 to $4,500 and
often include full cystic fibrosis transmembrane regulator
(CFTR) protein analysis.”*”’® Results may contain
genetic variants of unknown significance, and a genetic
diagnosis may not be clearly established. Thus, genetic
counselling is recommended. Any patients with genetic
studies that provide unclear diagnostic information
should be referred to a PCD Foundation Clinical Center
for further investigations.

Tests Not Recommended for PCD Diagnosis

Several older diagnostic tests are no longer recom-
mended for PCD evaluation (Table 5), including nasal
saccharin testing,”® ciliary beat frequency calcula-
tion,®*®° and visual assessment of ciliary motion without
high speed recording devices. Each of these tests has
significant limitations, which can lead to frequent false
positive or false negative results, especially in uncooper-
ative children; thus, these tests are not appropriate for
PCD diagnosis. Radioaerosol mucociliary clearance
testing is potentially useful to rule out PCD.*"** Although
this test remains limited to a few expert centers, requires a
level of patient cooperation suitable for children >7 years
old, and cannot distinguish secondary ciliary dysfunction,
it may help to rule out PCD with a normal result.

Other Chronic Respiratory Conditions to Consider

The clinical symptoms associated with PCD often
overlap with other common pediatric and adult

Pediatric Pulmonology
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TABLE 4— PCD Genetics

Detected on current commercial

PCD genes Prevalence in PCD Ciliary structural defect PCD NGS panels
NMES + Partial ODA defect Yes
DNAHS ++++ ODA defect Yes
DNAI1 +++ ODA defect Yes
DNAI2 ++ ODA defect Yes
DNALI1 + ODA defect Yes
CCDCl114 ++ ODA defect Yes
CCDC103 ++ ODA + defect Yes
DNAAF1 ++ ODA and IDA defect Yes
DNAAF2 ++ ODA and IDA defect Yes
DNAAF3 + ODA and IDA defect Yes
LRRC6 ++ ODA and IDA defect Yes
HEATR2 + ODA and IDA defect Yes
RPGR + Normal Yes
OFD1 + Normal Yes
DNAHI11 +++ Normal Yes
CCDC39 +++ IDA defect + MTD defect Yes
CCDC40 +++ IDA defect + MTD defect Yes
RSPH9 + Central pair defect or normal Yes
RSPH4A ++ Central pair defect or normal Yes
RSPH1 ++ Central pair defect or normal

RSPH3 + Central pair defect or normal

CCNO + Oligocilia (residual axoneme normal)

MCIDAS + Oligocilia (residual axoneme abnormal)

DNAHS + Not available

CCDCI51 ++ ODA defect

ARMC4 ++ ODA defect

DYXI1C1 + ODA and IDA defect

C2lorf59 + ODA and IDA defect

ZMYNDI10 ++ ODA and IDA defect

SPAG1 ++ ODA and IDA defect

HYDIN + Normal

CCDC164 (DRC1) + Mostly normal (N-DRC defect)

CCDC65 (DRC2) + Mostly normal (N-DRC defect)

-+, genetic mutations causing <1% of all PCD; 4-4-, genetic mutations causing 1-4% of all PCD; +++, genetic mutations causing 4-10% of all
PCD; ++++, genetic mutations causing >15% of all PCD; IDA, inner dynein arm; IDA + MTD, inner dynein arm defect with microtubule
disorganization; N-DRC, nexin-dynein regulatory complex; ODA, outer dynein arm.

respiratory diseases (Table 6). Each of these other Sweat testing or cystic fibrosis genetic testing are
diseases should be considered in patients with chronic recommended when evaluating patients for PCD, as both
oto-sino-pulmonary symptoms; however, investigations diseases can present with similar phenotypes® and
should only be pursued when the clinical picture suggests produce nNO levels below the PCD diagnostic cutoff of
their presence. Thus, PCD is not a diagnosis of exclusion. 77 nl/min.”® Immunodeficiency can also present similarly

TABLE 5—Tests NOT Recommended for Diagnosing Primary Ciliary Dyskinesia

Tests NOT recommended for primary ciliary dyskinesia diagnosis  Potential for false positive results  Potential for false negative results

Nasal saccharin testing Very high' Very high'
Radioaerosol mucociliary clearance tests High* —
Ciliary beat frequency alone (CBF) High® High®
Ciliary motion analysis without high speed videomicroscopy Very high? Very high*

'This test is subjective and involves a high degree of cooperation by the patient. In children <5-7 years old, the feasibility of this test will be low
due to poor patient cooperation.

“This test can result in false positive PCD diagnoses, as detected abnormalities in mucociliary clearance lack specificity, and may be due to
secondary causes.

3In proven cases of PCD, CBF can be low, normal, or high, leading to false positive and false negative results.®

“*Visual assessment of ciliary motion without high speed video-recording devices will lead to frequent false positive and false negative results.
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TABLE 6— Other Chronic Respiratory Conditions to Consider When Considering a Diagnosis of PCD

Chronic condition

Methods of evaluation

Cystic fibrosis
Immunodeficiency

Sweat chloride testing or cystic fibrosis genetic testing
Quantitative measurement of immunoglobulins, lymphocytes, complement levels, antibody responses to vaccines,

and complete blood counts. Consultation with a board certified Immunologist is also recommended

Asthma

Clinical history, pulmonary function testing, and asthma medication trials. Although one normally expects asthma-

related cough to be dry in nature, it can seem wet to parents when accompanied by viral respiratory infections.
Obstructive defects on pulmonary function testing can be seen with both PCD and asthma, and bronchodilator
responsiveness is not exclusive to asthma and does not exclude a diagnosis of PCD

Pulmonary aspiration
likely
Allergic rhinitis

Clinical feeding history followed by swallowing assessment and intervention only when pulmonary aspiration seems

Clinical history of seasonal symptoms, allergy testing, and trials of nasal corticosteroids and antihistamines, which

should greatly improve allergic rhinitis symptoms. PCD nasal disease shows minimal (if any) improvement with

these interventions

Protracted bacterial
bronchitis

antibiotics

Clinical history of 3 weeks of wet cough in pre-school aged children, with resolution of cough after 14 days of
amoxicillin plus clavulinic acid.'*The cough usually does not return after a subsequent 2-week period off

to PCD,** and in patients with suspected PCD, laboratory
studies investigating immunodeficiency are necessary.
Preliminary study of nNO in certain humoral immuno-
deficiencies has shown normal values well above 77 nl/
min,® but further study is required to know if all forms of
immunodeficiency produce normal nNO levels.
Pulmonary aspiration, with or without gastroesopha-
geal reflux, can cause chronic respiratory symptoms in
adults and children, including cough, wheeze, bronchitis,
or pneumonia.®®®’ Thus in patients with possible PCD, a
thorough feeding history is essential. A history of chronic
cough from asthma can also resemble PCD in young
children, especially with frequent viral infections from
daycare exposures. Additionally, chronic nasal conges-
tion from allergic rhinitis can seem similar to PCD
rhinosinusitis. However, PCD nasal disease is present
year-round and does not resolve with seasonal change, as
often occurs with allergic rhinitis. Lastly, protracted
bacterial bronchitis (PBB) is a disorder of preschool aged
children causing >3 weeks of wet cough with lower
airway bacterial infection and airway neutrophilia.*® In
general though, the characteristic, year-round, daily, often
wet or productive cough of children with PCD usually
distinguishes them from these other conditions.

Diseases that Co-Exist With PCD

PCD can rarely co-exist with other rare disorders
(Table 7). Retinitis Pigmentosa (an inherited cause of
blindness from retinal ciliary dysfunction) and Orofacio-
digital Syndrome (including mental retardation, cranio-
facial abnormalities, macrocephaly, digital anomalies,
and cystic kidneys) are X-linked disorders involving
ciliary genes, RPGR and OFDI, respectively.*"*
Although these account for a very small minority of
PCD cases, there may be further overlap of retinal and
respiratory cilia.”®®' Thus, retinal examination is

recommended in individuals with PCD due to gene
mutations in RPGR, clinical visual disturbances, or a
family history of Retinitis Pigmentosa, whereas PCD
patients with OFD1 phenotypes should be referred for
genetic consultation.

Various diseases caused by genetic disorders of non-
motile cilia can result in cystic kidneys, cystic or
cholestatic liver, skeletal malformations, developmental
delay, hydrocephalus, blindness, or deafness. These
include Joubert Syndrome, Bardet-Biedl syndrome,
Usher Syndrome, Jeune Syndrome, polycystic kidney
disease, and others. The overlap of these non-motile
ciliopathies with respiratory cilia dysfunction is unusual,
and poorly understood at present,()o’()z’()3 but increased
rates of bronchiectasis are found in polycystic kidney
disease.”* Therefore, consultation with a geneticist or
other subspecialists is recommended when patients with
possible PCD have features of non-motile ciliary
dysfunction.

PCD can also co-exist with other rare diseases through
close proximity of disease causing mutations at the same
chromosomal locus (Table 7). Cri du Chat syndrome can
occur with PCD due to a large deletion on chromosome 5p
and a point mutation in DNAH5 on the remaining
chromosome.?? Glanzmann Thrombasthenia (associated
with ITGB3) can occur with PCD (associated with
CCDC103) through mutations in the neighboring genes
on chromosome 17.%° Alternatively, PCD can co-exist
with other rare diseases through disease-causing muta-
tions which are not in close genetic proximity; such as
cystic fibrosis due to mutations in CFTR (Chr7q) with
PCD due to mutations in DNAH1 (Chr7p),”® and Miller
Syndrome due to mutations in DHODH (chr 16) with
PCD due to mutations in DNAHS5 (Chr5).”

Recent publications have also shown respiratory ciliary
dysfunction in patients with mild forms of congenital
heart disease, not meeting cardiology definitions for SA or
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TABLE 7— Other Diseases Co-Segregating With PCD

Associated rare disorder Level of PCD association

Method of PCD overlap

Specific gene affected

Situs ambiguus and heterotaxy At least 12% of PCD

Retinitis pigmentosa Multiple unrelated cases
reported; <1% of PCD
1 sibling-pair reported;

<1% of PCD

Orofaciodigital syndrome
(sibling males with mental
retardation and macrocephaly)

Cri du chat syndrome 2 unrelated cases reported

Shared common genes

Shared common gene mutation

Shared common gene mutation

Mutation in close proximity

Any PCD gene encoding for ODA, IDA,
or ODA + IDA proteins (ex: DNAHS,
DNAHI11, CCDC39/40, LRRC6,
DNAAF1/2/3)"

RPGR2!91.161.162

OFD1¥

Chr 5p deletion including DNAH5%2

to PCD gene

Glanzmann thrombasthenia 1 sibling-pair reported

Mutation in close proximity

Chr 17q haplotype that includes
CCDC103 and ITGB3%

to PCD gene

—

Cystic fibrosis case reported

Miller syndrome sibling-pair reported

—

Common variable
immunodeficiency

sibling-pair and 2
unrelated cases reported

—

Polycystic kidney disease
Familial mediterranean fever

case reported
1 case reported

Other non-motile ciliopathies
(Joubert, Bardet-biedl, Usher,
Jeune syndromes, and others)

No definite cases reported

Mutations in two different genes

Mutations in two different genes

Unknown

Unknown
Unknown

Unknown

Chr 7 including region with DNAH11
and CFTR via uniparental isodisomy®®

Biallelic mutations in DNAHS (Chr 5)
for PCD and DHODH (Chr 16) for
Miller syndrome97

1 sibling-pair with homozygous
DNAH11 mutations and low IgM and
S.pneumoniae titers after booster.'>” 2
unrelated cases; 1 with outer dynein
arm defect and low IgG titers'®’, and 1
with Kartagener Syndrome, abnormal
ciliary ultrastructure, and low IgG,
IgM, Tetanus and S.pneumoniae titers
after booster.'>®

Unknown®?

MEFV-R202Q polymorphism on Chr
16p13.3 and unknown PCD gene'®?

Unknown

heterotaxy.98 Thus, physicians should ask about chronic
oto-sino-pulmonary symptoms in all patients with
congenital heart disease to screen for possible PCD and
test as indicated.

CLINICAL CARE AND LONG-TERM MONITORING
Pulmonary Care and Monitoring

Long-term follow-up should be in a PCD Foundation
clinical center or an accredited cystic fibrosis center that
has a comprehensive, multidisciplinary team approach to
care. Outpatient visits with a pulmonologist experienced
in management of chronic suppurative lung disease, such
as cystic fibrosis, are recommended 2—4 times annually
(Table 8). Surveillance cultures of expectorated sputum or
oropharyngeal cough swabs are recommended two to four
times annually in all PCD patients." Although the most
common airway pathogens in children with PCD are
Streptococcus pneumoniae, Haemophilus influenzae, and
Moraxella catarrhalis, surveillance cultures should be
processed in the same manner as cystic fibrosis cultures,
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including examination for Pseudomonas aeruginosa and
other Gram negative organisms, as well as non-
tuberculosis mycobacterial (NTM) organisms.'* Culture
results should guide antibiotic therapy during future
respiratory exacerbations. When PCD patients are not
responding to culture-directed antibiotics, physicians
should consider additional NTM and fungal cultures,
allergic bronchopulmonary aspergillosis testing (ABPA)
testing (IgE levels + evidence of aspergillus specificity)
and bronchoscopy with bronchoalveolar lavage fluid
cultures to guide antimicrobial therapy.

Spirometry using ATS/ERS criteria”’® is suggested two
to four times annually to follow disease progression in
PCD. Although spirometry may not be the most sensitive
test of pulmonary function in PCD, it is the most available
testing method in pediatric and adult centers. With further
validation, other tests of pulmonary function, such as
multiple breath washout, may be useful in PCD.'%%!°!

Chest radiography should be performed at diagnosis
and during respiratory exacerbations, as indicated.
Otherwise, chest radiography should be performed every
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TABLE 8—Suggested Schedule of Investigations and Clinical Care in Primary Ciliary Dyskinesia

Clinical visits
Pulmonology: 2—4 times/year
Otolaryngology: 1-2 time/year in children, as needed in adults
Audiology: at diagnosis and as needed per otolaryngology
Reproductive medicine: As clinically needed

Long-term surveillance
Chest radiography: every 2—4 years

Chest computed tomography: consider at least once after 5—7 years old (when sedation not required and images are of highest quality)'

Airway microbiology cultures: 2—4 times/year

Non-tuberculosis mycobacterial cultures: every 2 years (and with unexplained clinical decline)

Pulmonary function testing: 2—4 times/year

ABPA testing: IgE levels + evidence of aspergillus specificity at diagnosis, with new onset wheezing, unexplained clinical decline

Preventative therapies
Airway clearance: daily
Nasal sinus lavage: daily (when pertinent)
Standard vaccinations: per local schedule
Influenza vaccine: annually?
13-valent pneumococcal vaccine: per ACIP guidelines®
23-valent pneumococcal vaccine: per ACIP guidelines®
RSV immunoprophylaxis: consider monthly in first winter’

'And as clinically indicated on a case by case basis.
2After 6 months old, including household members.
3ACIP guidelines.
4ACIP guidelines.

3Specifically consider in infants with complicated respiratory courses, including prematurity, prolonged mechanical ventilation, prolonged need
for supplemental oxygen, need for home supplemental oxygen, or frequent respiratory illnesses.

2-4 years in stable patients, in order to monitor disease
progression. The decision to use serial CT scans for
monitoring PCD disease progression should be decided
on a case by case basis, and the lowest possible radiation
doses should be used. However, a chest CT scan is
generally recommended at least once after diagnosis to
detect bronchiectasis, which may encourage better
compliance to airway clearance in patients and parents
who are aware of this finding. Chest CT can be considered
when children are old enough to cooperate (and avoid
sedation), and images will be of sufficient quality to
diagnose bronchiectasis, or sooner depending on clinical
symptoms.33 =% Some centers perform chest CT scans on
PCD patients every 5 years, but there is no evidence that
this improves clinical outcomes,'?> and cumulative
radiation doses need to be considered for PCD patients.
Infection control policy is essential for clinical care in
PCD, and general hospital infection control policies
should be followed where PCD patients receive care.
Patients with resistant organisms on sputum culture should
be specifically targeted for infection control in all clinical
areas. Although there is no evidence for cross contamina-
tion of respiratory organisms among PCD patients, it is
logical to assume this may occur, as it does in similar
diseases.'** More stringent infection control policies have
the potential to cause psychosocial harm to patients and
families,'** and thus should be avoided in PCD. However,
this recommendation may be adjusted if there is clear
evidence for risks that outweigh potential harm.

Otolaryngology Care and Monitoring

Pediatric PCD patients should visit a pediatric otolaryn-
gologist at least once to twice annually, while adult patients
should have otolaryngology care, as needed. An initial
audiology assessment in all PCD patients is suggested at
diagnosis, with subsequent evaluations coordinated
through their otolaryngologist. The major otolaryngology
concern in PCD patients is the nearly universal conductive
hearing loss due to persistent otitis media with effusion
(OME).'% Hearing abnormalities often improve in
adolescence, but in some cases, continue into adulthood.
Pressure equalization tubes (PET) are advocated for
children with PCD who have hearing deficits or speech
delay and middle ear effusions. Although several
systematic reviews have cast doubt on the utility of PET
in OME,'%%1%7 these studies are not necessarily generaliz-
able to a PCD population, where individuals are expected
to have greater portion of their prelingual life with
conductive hearing loss. In studies assessing hearing in
children with PCD post-PET placement, hearing normal-
ized in 80-100% of participants.**'%*'% In another study
examining surgical treatment with PET versus medical
management alone in PCD, children with PET had larger
hearing improvements post-operatively than those treated
with medical therapy.'*®

All patients undergoing PET insertion should be
counselled on the likelihood of multiple insertions, post-
operative otorrhea, and the possibility of a permanent
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tympanic membrane perforation (up to 50% in one
study).''® Additionally, patients with PET are typically
seen by their otolarygologist every 3—6 months while the
tubes remain in place.'”” Although some physicians avoid
PET in PCD for fear of prolonged post-operative otorrhea,
studies show that post-operative otorrhea in PCD is no
worse than the general population''' and is easily
controlled with topical therapies.'” Persistent otorrhea
can be attributed to biofilm formation, especially in
children with longer lasting PET“Z; however, given the
poor eustachian tube function and multiple PET insertions,
acquired cholesteatoma should also be considered as a
potential cause of persistent otorrhea in PCD.
Otolaryngologists should also monitor for chronic
rhinosinusitis (CRS) in PCD patients. CRS is estimated to
affect over 50% of patients with PCD*' and nasal
endoscopy (as permitted by age) can be used to identify
polyps which may be exacerbating already poor muco-
ciliary clearance. Nasal polyposis has been observed in up
to 15% of PCD patients.””''* Although CRS is not
generally life threatening, it substantially affects quality
of life."'* Daily saline irrigation has been demonstrated as
safe and beneficial in patients with CRS.''> Anecdotally,
in PCD patients, saline nasal irrigations are beneficial, but
studies demonstrating their efficacy are lacking. Given the
minimal side effect profile and likelihood for benefit,
nasal irrigations are generally encouraged for symptom-
atic CRS relief in PCD. The effects of saline irrigation are
likely increased after functional endoscopic sinus surgery
(ESS), as the saline solution will more easily reach the
sinus mucosa through post-surgical ostia. Thus, ESS is
often performed in PCD patients and may improve lower
respiratory tract disease in some patients.''® Antibiotics
and nasal steroids may be used in acute on chronic
exacerbations of rhinosinusitis; however, a recent review
showed lack of consensus on the treatment of CRS in
children with PCD,''? and there are no randomized,
controlled, or long-term prospective CRS studies in PCD.

PRINCIPLES OF TREATMENT
Routine Therapies in PCD

Airway clearance through daily chest physiotherapy is
highly recommended in PCD.""” Unlike cystic fibrosis,
cough clearance is preserved in PCD."'® Thus, airway
clearance is expected to be quite beneficial in PCD and
should be a cornerstone of long-term therapy. Daily
cardiovascular exercise should also be strongly encour-
aged, as poor exercise capacity is linked to decreased
pulmonary function in PCD,""? and exercise may improve
mucus clearance.'*

Antibiotics should be given for acute respiratory
exacerbations in PCD. Acute changes in cough, sputum
production, respiratory rate, or work of breathing are
likely reliable markers of a respiratory exacerbation in
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PCD (as demonstrated in non-CF bronchiectasis'?"), and
oral antibiotics are recommended for mild exacerbations.
Most physicians use a broad-spectrum oral antibiotic
(amoxicillin plus clavulinic acid or an equivalent
cephalosporin) to target the common respiratory patho-
gens in children with PCD. Typically, at least 2-3 weeks
of oral antibiotics are recommended in PCD, based upon
other disorders with similar pathophysiology (protracted
bacterial bronchitis,122 cystic ﬁbrosis,1 and non-CF
bronchiectasis'?*). More severe exacerbations, or those
failing oral therapy, may require parenteral antibiotics.
Antibiotic choice should be guided by past respiratory
cultures. Despite a lack of published evidence, inhaled
antibiotics are also an option for acute PCD respiratory
exacerbations, but these are usually reserved for patients
with Pseudomonas aeruginosa infection. Eradication of
initial positive Pseudomonas airway culture also seems
prudent in PCD, although no evidence supports this
practice. Non-CF bronchiectasis guidelines make similar
suggestions for Pseudomonas eradication.'?>'?® Al
though Burkholderia cepacia has not been reported in
PCD, recovery of this organism should prompt eradica-
tion practices.

Finally, PCD patients should receive recommended
vaccinations per local schedules. Annual influenza'?’ and
pneumococcal vaccinations (per the Advisory Committee
on Immunization Practices)lzg’129 are recommended in
PCD. In the first year of life, monthly (seasonal)
immunoprophylaxis against respiratory synctial virus
can be considered for infants with PCD, and more
specifically for infants with complicated respiratory
courses requiring prolonged oxygen supplementation.

Therapies to Consider on a Case by Case Basis in
PCD

Chronic suppressive inhaled antibiotics can be used on
an individual basis in PCD patients. Inhaled aminoglyco-
side and beta-lactam antibiotics are recommended for
chronic respiratory infections (particularly those associat-
ed with Pseudomonas aeruginosa) in non-CF bronchiec-
tasis,!?>13%131  and  several months of inhaled
aminoglycosides or colistin in Pseudomonas colonized
adults with non-CF bronchiectasis result in decreased
hospitalization and improved respiratory symptoms.'3*~'3*
However, there are no studies of inhaled antibiotics in
children with non-CF bronchiectasis or PCD.

Chronic suppressive oral antibiotics, including trimeth-
oprim-sulfamethoxazole, macrolides, or other agents, can
be used on a case by case basis in PCD. Chronic macrolide
therapy in PCD is currently under prospective investiga-
tion by the BESTCILIA consortium in Europe.”’ When
using chronic macrolide therapy, sputum culture surveil-
lance for non-tuberculous mycobacterium infection is
indicated."*®> Prospective clinical study of chronic



macrolides in adults and children with non-CF bronchi-
ectasis shows decreased respiratory exacerbations and
improved lung function,'**~'*® but increased emergence
of macrolide resistant respiratory organisms. The long-
term significance of macrolide resistance is unclear.'*
Small case reports of chronic macrolide therapy in PCD
also demonstrate some benefits, although not as robust as
those in non-CF bronchiectasis.'**~'** Remote studies on
trimethoprim-sulfamethoxazole in chronic bronchitis also
suggest benefit, but this agent has not been studied in
PCD 144145

Inhaled hyperosmolar agents can be used on a case-by-
case basis in PCD. These agents promote cough clearance
and alter mucus rheology to favor increased cough
clearance. However, a recent meta-analysis reported
unclear long-term benefits of hyperosmolar agents in non-
CF bronchiectasis.'*® Hypertonic saline (3% to 7%
concentration) has not been studied in PCD. Trials
comparing inhaled hypertonic saline to isotonic saline
show limited positive effects in non-CF bronchiectasis.'*’
When physicians use inhaled hypertonic saline in PCD, it
is essential that they instruct patients in proper equipment
sterilization. Inhaled dry powder mannitol has also been
studied in non-CF bronchiectasis, but outcomes are
inconclusive.'*®'*® Mannitol has not been studied in
PCD. .

DNase (dornase-alfa or Pulmozyme‘l‘j) can be used on
an individual basis in PCD. Although there are no
prospective trials of DNase in PCD, studies of DNase in
adults with non-CF bronchiectasis show no clinical
benefits in one study'*’ and increased frequency of
respiratory exacerbations with worsened lung function in
another study.lso Several case reports of DNase in PCD
suggest possible benefit when used for both short and
long-term periods.'>'™'>* Larger, prospective clinical
studies of DNase in children and young adults with
PCD are required before the potential negative effects of
this medication can be dismissed.

Lastly, inhaled bronchodilators can be used on a case-
by-case basis in PCD. In limited study, long-acting
bronchodilators (with inhaled corticosteroids) in non-CF
bronchiectasis do not show clinical efficacy. In PCD,
bronchodilators show mixed results, with one study
demonstrating significant improvement in lung function
after a single bronchodilator dose,154 whereas another
study showed unchanged lung function after 6 weeks of
regular bronchodilators.'>

Therapies Not Routinely Recommended in PCD

Inhaled corticosteroids are not routinely recommend in
PCD and should be reserved for PCD patients with
associated asthma or airway reactivity. Inhaled cortico-
steroids are also discouraged in non-CF bronchiectasis
without airway reactivity.'”® Similarly, intravenous
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immunoglobulin (IVIG) is not recommended for routine
use in patients with PCD. Immunodeficiency rarely exists
with PCD,"”'*® and most PCD patients have normal
immune function. PCD patients with documented
dysfunction of vaccine responses or other aspects of
humoral immunity may benefit from IVIG therapy.
Isolated IgA or IgG subclass disorders do not justify
IVIG therapy.

Lobectomy is not routinely suggested as therapy in
PCD. The decision to perform lobectomy in PCD requires
multi-disciplinary discussion between pulmonologists,
intensivists, and surgeons. In the post-operative period,
airway clearance is limited by pain and immobility, and
PCD patients are at risk of pulmonary deterioration.
Although lobectomy may be beneficial in rare cases of
PCD with severe, localized bronchiectasis, it should be
considered with caution. Similarly, lung transplantation
can be considered in PCD patients with advanced
pulmonary disease, but situs anomalies may surgically
complicate this procedure.'*'°

Summary

PCD is a rare disorder; consequently, only a limited
number of centers have extensive experience in the
diagnosis and management of PCD. Research over the
past decade has led to a revolution in diagnostic
approaches, including nNO and genetic testing. Never-
theless, many PCD patients are still undiagnosed or
misdiagnosed. To date, only limited studies have
addressed management of PCD, and there have been no
large, randomized clinical trials to direct therapy.
Therefore, this review article includes consensus recom-
mendations from PCD physicians in North America for
diagnosis, monitoring and management of PCD.
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